Storage is still limiting the implementation of hydrogen as an energy carrier to integrate the intermittent operation of renewable energy sources. Among different solutions to the currently used compressed or liquified hydrogen systems, physical adsorption at cryogenic temperature in porous materials is an attractive alternative due to its fast and reversible operation and the resulting reduction in storage pressure. The feasibility of cryoadsorption for hydrogen storage depends mainly on the performance of the used materials for the specific application, where metal-organic frameworks or MOFs are remarkable candidates. In this work, gravimetric and volumetric hydrogen uptakes at 77 K and up to 100 bar of commercially available MOFs were measured since these materials are made from relatively cheap and accessible building blocks. These materials also show relatively high porous properties and are currently near to large-scale production. The measuring device was calibrated at different room temperatures to calculate an average correction factor and standard deviation so that the correction deviation is included in the measurement error for better comparability with different measurements. The influence of measurement conditions was also studied, concluding that the available adsorbing area of material and the occupied volume of the sample are the most critical factors for a reproducible measurement, apart from the samples’ preparation before measurement. Finally, the actual volumetric storage density of the used powders was calculated by directly measuring their volume in the analysis cell, comparing that value with the maximum volumetric uptake considering the measured density of crystals. From this selection of commercial MOFs, the materials HKUST-1, PCN-250(Fe), MOF-177, and MOF-5 show true potential to fulfill a volumetric requirement of 40 g·L−1 on a material basis for hydrogen storage systems without further packing of the powders.

[download id=”1904″]